American Journal of Humanities and Social Sciences Research (AJHSSR) e-ISSN:2378-703X Volume-4, Issue-3- pp-54-59 www.ajhssr.com Research Paper

Open Access

Analysis The Effect of Financial Ratios in Predicting Changes in Profit

Anggita Rosalin¹, Dwi Susanti², Endang Soeryana³ ¹Faculty of Math and Science, Padjadjaran University, Indonesia.

ABSTRACT: Textile companies is one of the major types of industries in Indonesia whose development is prioritized to make a significant contribution to the national economy. This study aims to analyzed the effect of financial ratios on earnings changes by estimated parameters using panel data regression analysis. In panel data regression, there are three estimation models, namely CEM, FEM, and REM. These three models will be selected the bes model using Chow Test and Haussman Test. The result of this study, best panel data regression model is using Fixed Effect Model (FEM) with individual effect. Variables that have a significant effect on earnings changes are Return on Equity, Return on Asset, Net Profit Margin. **Keywords:** Data Panel Regression, Financial ratio, Profit.

I. INTRODUCTION

Textile is an important economic sector in meeting domestic needs in Indonesia. Economic developments in the textile world have an impact on the high competition in the business world so as to encourage business people with an interest in the development of a company to find out the position and financial condition of the company. The parties concerned to know the financial condition of a company are internal parties and external parties. Both have the same interests to find out information relating to the company. The media that is usually used to describe the condition and financial performance of a company is financial statements. From these financial statements, further research can be done called financial statement analysis to find out whether the company is in good condition, one of the analyzes that can be used is ratio analysis. The main focus of financial statements is earnings, this is stated by the Financial Accounting Standards Board - FASB (1978), Statement of Financial Accounting Concepts No.1, so financial statement information should have the ability to predict future earnings as a measure of company performance. The company's ability to achieve profits in the future is an indication of the company's performance and prospects. Based on the description above, the researcher is interested in conducting research with the title, "Analysis of the Effect of Financial Ratios in Predicting Profit Changes" using the panel data regression estimation method with 7 financial ratios as the independent variable.

A. Object of research

II. RESEARCH METHODS

The object in this study is the financial ratios in nine textile companies in Indonesia in the period 2014-2018, which includes TAT, FAT, ROS, ROE, ROA, GPM, NPM. This study uses financial ratios and earnings changes as independent and non-independent variables as follows:

Variable	Symbol
Total Asset Turnover	X_1
Fixed Asset Turnover	<i>X</i> ₂
Return on Sales	<i>X</i> ₃
Return on Equity	X_4
Return on Asset	X_5
Gross Profit Margin	<i>X</i> ₆
Net Profit Margin	<i>X</i> ₇
Change in profit	Y

Table 4.1 Research Variable

2020

AJHSSR Journal

C. Parameter Estimation in Panel Data Regression In estimating the parameters, several methods are needed to estimate the parameters such as the Common Effect Model (CEM) approach, Fixed Effect Model (FEM), and Random Effect Model (REM). 1. Common Effect Model (CEM)

American Journal of Humanities and Social Sciences Research (AJHSSR)

This method is the simplest method in estimating the panel data regression model because we combine data regardless of the time and place of research. CEM assumes that the intercept and slope in the cross section and time series units are the same. In the CEM approach with n explanatory variables can be written as follows (Dody Apriliawan, et al., 2013

Panel Data is data that is the result of observations on several individuals or (cross-section units) which

are each observed in several consecutive time periods (unit time) (Baltagi, 2005). The panel regression model that is only affected by one unit (unit cross-section and time series) is called the one-way component model, while the panel regression model that is affected by both units (cross-section and time series units) is called the two-way component model. In general, there are two approaches used in estimating models from panel data that are without individual influence (Common Effect Model) and models with individual influence (Fixed Effect

$$y_{it} = \beta + \beta x_{nit} + \varepsilon_{it}$$

B. Data Panel Regression

Model and Random Effect Model).

2. Fixed Effect Model (FEM)

This model assumes that intercepts are different for each cross-section or time series with a slope that is constant (unchanging). Models that assume intercepts are different for each cross-section but the slope does not change every time are called individual effect models. While the model that assumes different intercepts for each time series but the slope does not change every individual is called the time effect model. Estimation of panel regression parameters with the Fixed Effect Model uses the technique of adding dummy variables so that this method is often called the Least Square Dummy Variable model, so that the general equation can be formed as follows (William H Greene, 1990):

 $y_{it} = \beta_i D + \beta' x_{it} + \varepsilon_{it}$

3. Random Effect Model (REM)

Random Effect Model (REM) estimates panel data where interference variables may be interconnected between time and between individuals. The estimation of this model is assumed that each individual effect is random for all cross-section units. The REM regression equation is as follows (William H Greene, 1990):

 $y_{it} = \beta_i + \beta' x_{it} + \varepsilon_{it}$ D. Selection of Panel Data Regression Estimation Model

1. Chow Test

The chow test is used to select one model in panel data regression, which is between the Common Effect Model (CEM) or the Fixed Effect Model (FEM). The hypothesis in the chow test is as follows:

*H*₀ : *Common Effect Model* (CEM) *H*₁ : *Fixed Effect Model* (FEM) Reject H_0 if $F_{count} > F_{table}$ or $p - value < \propto$

2. Haussman Test

Hausman test is used to select one of the models in panel data regression, which is between random effect model (REM) or fixed effect model (FEM).

The hypothesis in the chow test is as follows:

*H*₀ : *Random Effect Model* (REM)

 H_1 : Fixed Effect Model (FEM)

Reject H_0 if $w > \chi^2$ or $p - value < \propto$

E. Coefficient of Determination

The coefficient of determination (R^2) aims to measure how much the variation of the dependent variable Y can be explained by the independent variable X. If the value of the coefficient of determination is equal to 0 ($R^2 = 0$), it means that the variation of Y cannot be explained by at all X In other words $R^2 = 1$, meaning that the variation of Y as a whole can be explained by X. The value of R^2 ranges between zero and one.

2020

(2)

(3)

(1)

American Journal of Humanities and Social Sciences Research (AJHSSR)

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$
(4)

F Testing Parameters

1. F test

In general, hypothesis testing is as follows:

 H_0 There is no influence of the independent variable and the dependent variable

 H_1 : there is the effect of the independent variable and the dependent variable

 $F = \frac{R^2 / (N + K - 1)}{(1 - R^2) / (NT - N - K)}$

Where:

 R^2 : coefficient of determination

N: the number of cross section units

Q: The number of time series units

K: number of independent variables

If the value of $F_{hitung} > F_{tabel} = F_{\alpha;(k;NT-k-1)}$ then H_0 is rejected, meaning that there is an influence between the independent variable and the dependent variable.

2. T test

In general, hypothesis testing is as follows:

 H_0 : There is no significant influence of the independent variable and the dependent variable

 H_1 : there is a significant influence of the independent variable and the dependent variable

 $t_{count} = \frac{\beta_j}{se(\beta_j)}$ j: 1,2,3, ..., n
(6)

t: value of t_{count}

 β_i : regression coefficient

se (β_i): standard error / standard error of the regression coefficient

III.

If $|t_{hitung}| > t_{tabel} = t_{\left(\frac{\alpha}{2}, NT - k - 1\right)}$ then reject H_0 , which means there is a significant influence between the independent variables on the dependent variable.

RESULT AND DISCUSSION

3.1 Panel Data Regression Estimation

1. Common Effect Model

Lape	el 3.1	Esti	ma	tion	of	P	aram	lete	rss	in	CEN	Λ

Variable	Coefficient
С	0,126
X_1	-1,6024
X_2	-0,3745
X_3	-50,4983
X_4	-19,505
X_5	-18,12893
<i>X</i> ₆	28,24999
<i>X</i> ₇	69,13043

Based on the calculation above, the CEM model is obtained as follows:

 $Y_{it} = 0.126 + (-1.6024)X_1 + (-0.37450)X_2 + (-50.4983)X_3 + (-19.505)X_4 + (-18.128938)X_5 + (28.24999)X_2 + (69.13043)X_2$

$$+(28.24999)X_{6} + (69.13043)X_{7}$$

Based on the model obtained, it can be concluded that if the variable has a negative coefficient, this means that each addition of 1 unit to the variable, the value of earnings changes will decrease by the coefficient of the variable. As for the other variables, the coefficient value is positive, meaning that each addition to each variable, the change in earnings will increase by each coefficient.

2. Fixed Effect Model

a. Individual Effect Model

In the individual effects model, what counts is the effect of cross-section or individual units.

2020

(5)

Variable	Coefficient
X_1	-4,95844690
<i>X</i> ₂	1,146829215
<i>X</i> ₃	-4,1682921
X_4	-15,8566217
X_5	-65,3674500
<i>X</i> ₆	31,32614098
X_7	68,2909027

Table 3.2Estimation of Parameterss in FEM (individual effect models)

Then the intercept value of each company is:

sie eile interespe values of each compt			
Variable	Coefficient		
D_1	-2,877		
<i>D</i> ₂	-2,994		
D_3	-2,888		
D_4	0,476		
D_5	1,822		
D_6	14,742		
D ₇	-0,328		
D ₈	2,542		
D_{9}	0,201		

 Table 3.3 Intercept values of each company

Based on table 3.2 and table 3.3, the FEM model obtained with individual effects is :

$$= -54,378D_{1t} - 17,084D_{2t} - 83,669D_{3t} - 18,775D_{4t} - 27,780D_{5t} + 53,726D_{6t} - 24,643D_{7t} - 32,236D_{8t} - 41,947D_{9t} - 4.95844690X_1 + (1.146829215)X_2 + (-4.1682921)X_3 + (-15,8566217)X_2 + (-65,3674500)X_2 + 31,3261409X_2 + (68,2909027)X_2$$

+ $(-15.8566217)X_4$ + $(-65.3674500)X_5$ + $31.3261409X_6$ + $(68.2909027)X_7$ Based on the model obtained, it can be concluded that if the variable has a negative coefficient, this means that each addition of 1 unit to the variable, the value of earnings changes will decrease by the coefficient of the variable. As for the other variables, the coefficient value is positive, meaning that each addition to each variable, the change in earnings will increase by each coefficient.

b. Time Series Effect Model

 Y_{it}

In the individual effects model, what is taken into account is the influence of time series units, in this case the effect of the 2014-2018 time span on profit changes.

Table 3.4 Estima	tion of Parameterss	in FEM (Time Seri	es Effect models)
	Variable	Coefficient	

Variable	Coefficient
<i>X</i> ₁	-1,75385242
<i>X</i> ₂	-0.33590736
<i>X</i> ₃	-50,7177692
X_4	-19,1968462
<i>X</i> ₅	-14,5885897
<i>X</i> ₆	25,95026395
X ₇	68,49269570

Then the intercept value of each time is

Table 3.5 Intercept value for each time				
Variable	Coefficient			
<i>D</i> ₁ (in 2018)	-0,00188			
<i>D</i> ₂ (in 2017)	0,178072			
<i>D</i> ₃ (in 2016)	0,764538			
<i>D</i> ₄ (in 2015)	-0,61025			
<i>D</i> ₅ (in 2014)	1,523142			

Based on table 3.4 and table 3.5, the FEM model with individual effects is obtained :

$$Y_{it} = -0.00188D_{i1} + 0.178072D_{i2} + 0.764538D_{i3} - 0.61025D_{i4} + 1.523142D_{i5} - 1.75385242X_1 + (-0.335907360)X_2 + (-50.7177692)X_3 + (-19.19684628)X_4 + (-14.5885894)X_5 + (-19.19684628)X_6 + (-19.1968468)X_6 + (-19.1968468)X_6 + (-19.19684$$

$$+ 25.95026395X_6 + (68.49269570)X_6$$

Based on the model obtained, it can be concluded that if the variable has a negative coefficient, this means that each addition of 1 unit to the variable, the value of earnings changes will decrease by the coefficient of the variable. As for the other variables, the coefficient value is positive, meaning that each addition to each variable, the change in earnings will increase by each coefficient.

3. Random Effect Model

Ta	Table 3.6 Estimation of Parameters in REM			
	Variable	Coefficient		
	С	-1.5226148		
	X_1	-0.50194196		
	<i>X</i> ₂	-0.2364186		
	<i>X</i> ₃	-74.1163815		
	X_4	-20.615600		
	X_5	2.63007417		
	X_6	31.6312365		
	X_7	79.3394245		

Based on table 3.6, the REM model is:

 $Y_{it} = -1.5226148 + (-0.50194196)X_1 + (-0.2364186)X_2 + (-74.1163815)X_3 + (-20.615600)X_4 + 2.63007417X_5 + 31.6312365X_6 + 79.3394245X_7$

Based on the model obtained, it can be concluded that if the variable has a negative coefficient, this means that each addition of 1 unit to the variable, the value of earnings changes will decrease by the coefficient of the variable. As for the other variables, the coefficient value is positive, meaning that each addition to each variable, the change in earnings will increase by each coefficient.

3.2 Selection of the Best Panel Data Regression Model

1. Chow Test

Table 3.7 Chow Test				
Effect Test Statistic p-value				
Cros-section Chi Square	18,203811	0,0197		

Based on table 4.12, the p-value is less than the significance level (0.05), so reject H0. This means that the better model to use is FEM. Next choose between FEM and REM with haussman test. 2. Haussman Test

Table 3.8 Haussman Test				
Test Summary	Statistic	p-value		
Cros-section random	14.288458	0.0463		

Based on Table 4.13the p-value obtained at random cross-section is 0.0463 where the p-value is smaller than the significance level (0.05) so that H0 is rejected. Then the better model to use is FEM. 3.3 Coefficient Determination

To find out which model is better in fixed effect panel data can be seen from the coefficient of determination (R^2) as follows:

Table 3.9 Coefficient Determination of FEM (individual effect)

Coefficient Determination	Coefficient value	
\mathbb{R}^2	0,70	0789

Table 3.10 Coefficient Determination of FEM (time series effects)

Koefisien Determinasi		Nilai Koefisien	
\mathbb{R}^2		0,586008	

Because the coefficient of determination in the individual effect model is greater than the time effect model, a better model is the individual effect model.

3.4 Parameters Testing

1. F-test

F count		
4,5281		
ic	1	52

Based on the above results, the f_{count} is 4.5281 where $F_{\alpha;(k;M'-k-1)} = F_{0,05;(7;37)} = 2,27$ so $f_{count} > f_{tabel}$ then reject H₀. This means that the independent variables together have a significant effect on the dependent variable.

2. T-test

 Table 3.11 The value of t count
 on FEM estimation with individual effect model

Variables	Coefficient
С	0.002314
X_1	0.380693
X_2	0.749282
X_3	0.172579
X_4	3.668516
X_5	3.036352
<i>X</i> ₆	1.497004
<i>X</i> ₇	2.538770

Based on Table 4.10, variables X_1, X_2, X_3 , dan X_6 have $t_{count} < t_{table} = t_{(0.025, 45-7-1)} = 2.02619$ so variables X_1, X_2, X_3 , and X_6 have no significant effect on variable Y. Conversely the variables X_4, X_5 , dan X_7 have $t_{count} > t_{table} = t_{(0.025, 45-7-1)} = 2.02619$ then the variables X_4, X_5 , dan X_7 significantly influence the variable Y.

IV. CONCLUSION

Based on research results using panel data regression analysis, the following conclusions are obtained:

The best model of this case is the Fixed Effect Model with an individual effect model where if TAT has increased by 1 value, there will be a decrease in profit changes of 4.9584469. If FAT has increased by 1 value, there will be an increase in profit change of 1.146829215. If the ROS has increased by 1 value, there will be a decrease in profit changes of 4.1682921. If ROE has increased by 1 value, there will be a decrease in profit changes of 15.8566217. If ROA has increased by 1 value, the profit change will decrease by 65.3674500. If GPM has increased by 1 value, there will be an increase of 68.2909027. The independent variables jointly influence the dependent variable and the variables X_1, X_2, X_3 , and X_6 do not significantly influence the Y variable. Instead the variables X_4, X_5 , and X_7 significantly influence the Y variable

REFERENCES

- [1] Baltagi, Badi H. (2015). Econometric Analysis od Panel Data, 3rd Edition, John Wiley and Sons
- [2] Cheng Hsiao (2013). Analysis of Panel Data, 2ndEdition, Cambridge University Press.
- [3] Frees, E.W. (2004). *Analysis of Panel Data*, 2ndEdition, Cambridge University Press.
- [4] Gujarati, D. N. Dasar-Dasar Ekonometrika. Jilid 1. Jakarta: Erlangga. 2006.
- [5] Gujarati, D. N. Dasar-Dasar Ekonometrika. Jilid 2. Jakarta: Erlangga. 2006.
- [6] Kasmir. 2012, Analisis Laporan Keuangan. Jakarta: PT. Raja Grafindo Persada
- [7] Manuel Arellano. (2003). *Panel Data Econometrics*. Oxford University Press.
- [8] Rencher, A. C. (1998). *Multivariate Statistical Inference and Applications*. New York: John Wiley & Sons,Inc.
- [9] Wooldridge, J.M. (2001). *Econometric Analysis of Cross Section and Panel Data*, The MIT Press.