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ABSTRACT: More Internet of Things (IoT) devices connected to energy networks make operations better but 

create more ways for cyber attackers to get in. This research looks into how AI systems can secure IoT-

connected energy devices through a decentralized security monitoring system. The suggested network 

framework helps IoT devices identify and separate themselves from threats to strengthen security while 

responding faster to minimize widespread cyber breaches. Our research demonstrates how connected IoT 

devices must share threat information to defend themselves while highlighting the risk of relying on one 

centralized control system. Our focus is to develop a system that lets energy networks find and respond to 

threats automatically in real time while building a solid defense for IoT-powered power systems. 

 

I. INTRODUCTION 

1.1 Background of the Study 

Over the last few years IoT devices have grown in importance across energy systems to control electricity 

networks better and reduce power use. Connected automation systems automate data processing through 

networks linking smart meters with industrial control hardware. The techniques making energy networks more 

effective create major security threats because of their built-in network connections. Because IoT networks 

contain numerous connected devices and constrained processing power traditional security methods prove hard 

to implement efficiently. When threat detection systems operate from one location they may reach their limits 

and allow attackers to exploit weak spots in critical infrastructure. The need to develop better network security 

arises because cyber attacks targeted at energy IoT devices including data theft and denial-of-service attacks 

happen too often. AI brings efficient threat protection by efficient machine learning and deep learning systems. 

AI systems applied to IoT security let energy networks automatically detect and stop online attacks as they 

happen. This research develops a distributed AI framework to detect cyberthreats against energy system devices 

connected to IoT technology. 

1.2 Statement of the Problem 

More connected Internet of Things devices enter the energy sector creating an expanding range of cyber threats. 

These security threats put critical infrastructure at risk while hurting both user privacy and economic security. 

Central cybersecurity tools are no longer effective because they lack the flexibility to protect the diverse 

individual threat points in IoT networks. When security functions exist in a single location they make it easier 

for hackers to focus attacks everywhere at once. Current threat detection systems have limits because they do 

not automatically find and defend against attacks throughout distributed Internet of Things networks without 

delays. The weak security of IoT-connected energy devices leads to multiple failures that spread across the 

entire network to cause widespread disruptions. A decentralized security model that runs on AI technology 

proves better at protecting against new threats while functioning on a larger scale. 

1.3 Objectives of the Study 

The primary objective of this research is to design an AI-powered, decentralized threat intelligence model 

tailored for IoT-connected energy devices. This model aims to address the following specific objectives: 

• Develop a decentralized architecture for cybersecurity that leverages AI for self-detection and 

isolation of threats in real-time. 

• Enhance IoT security by enabling individual devices to autonomously identify and respond to 

potential cyberattacks, reducing reliance on centralized systems. 

• Improve threat intelligence through AI-driven data analysis, enabling rapid identification of 

anomalies and malicious behaviors across a distributed IoT network. 

• Evaluate the effectiveness of the proposed model in mitigating risks, minimizing response times, and 

ensuring the stability of energy networks under attack. 

http://www.ajhssr.com/
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By achieving these objectives, this study seeks to contribute to the ongoing development of secure, AI-driven 

IoT ecosystems in the energy sector, with a focus on resilience and proactive threat management. 

1.4 Relevant Research Questions 

• How can AI-powered threat intelligence systems be integrated into a decentralized architecture for IoT-

connected energy devices? 

• What are the most effective machine learning algorithms for detecting and isolating cybersecurity 

threats in IoT environments? 

• How can IoT devices autonomously detect and isolate cyber threats without relying on centralized 

control? 

• What are the potential challenges and limitations of implementing a decentralized AI-powered security 

model for energy networks? 

• How can the proposed model improve the overall security and resilience of IoT-connected energy 

networks in comparison to traditional centralized systems? 

These research questions focus on the integration, application, and evaluation of AI in decentralized threat 

intelligence systems for IoT-connected energy devices, with an emphasis on real-time detection, isolation, and 

response. 

1.5 Research Hypothesis 

Based on the identified research questions, the following hypotheses are proposed: 

• Hypothesis 1: AI-powered decentralized threat intelligence systems can effectively detect and mitigate 

security threats in IoT-connected energy devices, outperforming traditional centralized cybersecurity 

systems in terms of speed and scalability. 

• Hypothesis 2: Machine learning algorithms, particularly anomaly detection and clustering techniques, 

are highly effective in identifying novel and previously unknown threats in distributed IoT networks. 

• Hypothesis 3: Decentralized security models, through autonomous threat detection and isolation 

capabilities, can improve the resilience of energy networks, reducing the likelihood of large-scale 

cyberattacks. 

These hypotheses will guide the research methodology and experiments to evaluate the feasibility and 

performance of the proposed system. 

1.5 Significance of the Study 

This study is significant in several ways. First, it addresses a critical gap in IoT cybersecurity within the energy 

sector, providing a novel approach to securing interconnected devices that are increasingly susceptible to cyber 

threats. By developing an AI-powered, decentralized threat intelligence model, this research has the potential to: 

• Enhance security in energy networks by providing real-time, autonomous threat detection and 

mitigation. 

• Promote resilience by ensuring that attacks are isolated and contained at the device level, preventing 

the spread of damage across the network. 

• Provide scalability for securing large and complex IoT systems, enabling the protection of diverse 

energy infrastructures from small-scale devices to large power grids. 

Furthermore, this study could pave the way for future advancements in AI-driven cybersecurity, offering 

insights that may be applicable to other sectors relying on IoT technologies. 

1.6 Scope of the Study 

This research focuses on security testing of Internet of Things energy devices used in smart grid networks and 

other energy management solutions. We will test the decentralized AI threat intelligence system in these 

environments. While the study will consider various types of cybersecurity threats, it will primarily focus on 

those that pose a significant risk to IoT-connected energy devices, including but not limited to: 

• Data breaches 

• Denial-of-service (DoS) attacks 

• Malware and ransomware infections 

• Man-in-the-middle attacks 

This research will also explore the technical and operational challenges of implementing decentralized security 

systems and will be limited to evaluating the model's performance in controlled simulations or test environments 

rather than real-world large-scale deployments. 

1.7 Definition of Terms 

• AI (Artificial Intelligence): The simulation of human intelligence processes by machines, particularly 

in the context of learning, reasoning, and self-correction. 

• IoT (Internet of Things): A network of interconnected devices that communicate and share data, often 

with minimal human intervention. 

• Threat Intelligence: Information collected, analyzed, and used to understand potential or ongoing 

cybersecurity threats to an organization's assets. 
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• Decentralized Architecture: A system design where control and decision-making are distributed 

across multiple nodes or devices, as opposed to being concentrated in a central location. 

• Machine Learning (ML): A subset of AI that involves the development of algorithms that enable 

systems to learn from and make predictions or decisions based on data. 

• Smart Grid: An electricity supply network that uses digital communications technology to detect and 

react to local changes in usage, improving efficiency, sustainability, and reliability. 

 

II. LITERATURE REVIEW 

2.1 Preamble 

Our need for solid cybersecurity grows larger as the Internet of Things spreads across different industries and 

enters the energy sector. Smart grids with IoT technology help businesses reduce energy waste and run 

operations better. Our connected system architecture faces important security challenges because it works across 

distributed systems and many devices pose specific protection weaknesses. Research programs now heavily 

depend on AI-based systems that find and control security dangers as they happen in IoT environments. This 

research study combines studies about AI security monitoring systems with research on IoT networks and 

decentralized security in the energy industry context. The review is divided into two main sections: This 

research analyzes both theory behind AI-IoT security and then reviews practical evidence about security 

systems. 

2.2 Theoretical Review 

A. IoT Security Challenges 

The Internet of Things creates security challenges that standard IT systems do not need to face. The large 

number of IoT devices faces security problems because they have small computer systems combined with power 

limits and technical system differences. Liu et al. (2021) demonstrate that the IoT risks more cyberattacks since 

its many distributed systems lack a centralized security center. Many IoT security efforts prove challenging 

when devices must be secured in inaccessible physical locations according to Gao et al. (2022). Basic security 

problems in IoT devices mainly come from DDoS attacks, data breaches, man-in-the-middle assaults, and 

device identity manipulation. Old technology elements combined with subpar implementation techniques in IoT 

devices create weak security points because these devices do not include essential protection features (Zhou & 

Yang, 2023). 

B. Threat Intelligence in IoT Systems 

Security threat detection involves obtaining, understanding, and sharing valuable security threat data. Through 

IoT threat intelligence devices and networks can identify and analyze security threats to respond effectively 

(Chen et al., 2022). Existing threat intelligence methods combine data from multiple sources in one central 

database for security risk assessment. Since IoT networks naturally operate without a single central authority 

there is now a bigger push toward making threat intelligence systems work locally from each piece of hardware. 

When threat intelligence goes local it lets devices make decisions instantly and helps protect large networks 

across all environments. Wang et al. demonstrate from 2021 that distributed security systems help secure large 

IoT setups because a single control point becomes a weak point as IT grows. When threat intelligence is 

distributed across multiple devices rather than one central point it becomes harder for attackers to break into the 

system (Rashid et al., 2023). 

C. AI in IoT Security 

The capability of Artificial Intelligence (AI) systems like machine learning and deep learning helps these tools 

find security threats as they happen. because AI systems analyze big data and identify patterns efficiently they 

become excellent helpers for IoT security protection according to Zhang & Zhao (2021). Several IoT security 

applications use supervised learning techniques but researchers also explore unsupervised learning and 

reinforcement learning according to Chen et al. (2021). Neural networks and convolutional neural networks 

show effective results in discovering modern cyber security threats. Our models use data samples to recognize 

stealthy patterns and remain effective even against evolving cyberthreats per Lee et al. (2022). The ability of AI 

to respond immediately to threats enables IoT devices to neutralize security problems automatically according to 

Piro et al. (2021). 

AI systems for IoT security use both machine learning and blockchain technology to protect data exchanges 

between dispersed devices (Sun et al., 2021). The application of AI within IoT security brings valuable benefits 

but developing models from large datasets and understanding AI results remains difficult according to new 

research from Yuan et al (2023). 

 

2.3 Empirical Review 

A. AI-Based Threat Detection Models 

Research through experiments demonstrates how AI technologies find security threats in IoT networks. Chen 

and colleagues (2021) built an intrusion detection system using machine learning methods which found DDoS 

attacks by running analysis with decision trees and support vector machines (SVM). Their system detected 
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security risks accurately while producing minimal false alarms so it identified threats without delay. Zhang and 

Zhao introduced an artificial intelligence-based system specific for smart grid protection against security threats 

in 2021. Despite accepting user input the system learned to spot unusual internet usage patterns before 

cyberattacks could happen. According to their research results machine learning methods including Random 

Forest and SVM helped detect if IoT-connected energy devices show normal or malicious behavior. The study 

team at Piro et al. (2021) built an anomaly detection model using deep learning to identify cyberattack signs at 

energy meters through autoencoders. The researchers tested their model using real smart grid data and proved its 

efficient detection of attacks regardless of data errors. 

 

B. Decentralized Threat Intelligence Systems 

Research shows how distributed threat information benefits IoT security. Wang et al. proposed a security system 

for IoT devices in 2021 that let resources observe and handle threats at their own level through edge computing. 

Through this model devices could exchange threat information and defend themselves against attacks without 

needing one single control point. Their findings showed that distributing threat detection across multiple devices 

helped spot dangers sooner while making attacks against standard centralized systems harder to pull off. People 

have studied how blockchain technology improves security for devices operating independently. Sun et al. 

developed a blockchain network to help secure Internet of Things devices and protect energy network safety in 

2021. Their threat intelligence model used blockchain technology to safely store data and freely share protection 

insights across devices. Researchers found that blockchain technology makes data sharing in IoT systems safer 

and more reliable. Researchers Rashid et al. developed a hybrid system in 2023 that merged artificial 

intelligence and blockchain networks to safeguard smart cities. The system combined AI to find threats at the 

local level with blockchain to make data tracking results safe and openly visible. The combination model gave 

better protection against attacks and worked well with more devices because it allowed more gadgets to share 

threat information with each other. 

 

C. Real-World Applications and Case Studies 

Multiple research examples show how AI and decentralized technology secure IoT systems. Research shows AI-

based intrusion detection works successfully for smart grids by revealing cyber attack indicators in power 

systems (Liu et al., 2022). A research team studied energy management system data to prevent unauthorized 

access by using ML models to check IoT sensor networks for cyber threats (Gao et al., 2022). In industrial IoT 

settings decentralized systems protect devices and protect important infrastructure. Yang et al. ship a 

decentralized defense system for industrial internet of things environments in their 2022 research. The 

technology automatically found device-based threats then blocked them to stop wider network attacks. The 

research showed that splitting threat detection throughout an IoT network can successfully defend widespread 

internet-connected devices.  

Research shows AI and decentralized systems help protect us from emerging cybersecurity dangers that connect 

Internet of Things devices to energy networks. The use of AI technologies including machine learning and deep 

learning detects cyber dangers effectively while decentralized systems maintain greater stability across a 

network. Investigations identify significant improvements in securing IoT energy devices but present remaining 

difficulties in maintaining reliable models and working with different datasets along with brand new tech 

additions to the system. Our studies need ongoing development to test success in real networks with mixtures of 

advanced security methods. 

III. RESEARCH METHODOLOGY 

3.1 Preamble 

This study builds an AI system with decentralized protection features to defend energy devices that connect to 

the IoT in smart grids. The goal of this research is to develop an AI solution which detects and separates cyber 

threats inside devices to provide strong security and operational reliability. Our strategy combines distributed 

threat intelligence designs with learning algorithms for this achievement. Every IoT network device can scan for 

security risks and react autonomously because an AI algorithm helps these devices learn how to detect cyber 

threats. Through this section we explain the research process that brings together theories, algorithm creation, 

and system setup to test our decentralized threat intelligence design. We will walk you through each process 

from model design to getting data to training our algorithm step by step. 

 

3.2 Model Specification 

This study uses a decentralized threat intelligence design to help IoT energy devices automatically spot cyber 

threats and create protective measures. Each device in a decentralized system guards its own security without 

depending on a central unit that might be hacked. Through AI technology this model helps devices find security 

risks and supports their neighbors in fixing problems before turning to central systems. 
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3.2.1 Key Features of the Decentralized Threat Intelligence Model: 

• Autonomous Threat Detection: Each IoT device in the network is equipped with machine learning 

models that analyze incoming data and detect potential cyber threats, such as DDoS attacks, data 

breaches, and unauthorized access attempts. 

• Collaborative Isolation: When a threat is detected by one device, the affected device isolates itself to 

prevent the spread of the attack. Other devices in the network are alerted and can adjust their operations 

accordingly to avoid contamination or damage. 

• Distributed Data Analysis: The model uses distributed data analysis, where data from each device is 

analyzed locally. This approach ensures that IoT devices can independently make decisions based on 

their environment without needing to rely on a central server. 

• Resilience and Scalability: By decentralizing threat detection, the system becomes more resilient to 

large-scale attacks that might target a central control point. Furthermore, as the system is distributed, it 

can scale effectively to accommodate large and growing networks of IoT devices. 

• Real-time Response: The decentralized model enables IoT devices to respond to threats in real time, 

reducing the latency and response time typical of centralized systems. This fast response capability is 

essential in preventing potential damage in dynamic environments like smart grids. 

 

3.2.2 Algorithm Overview: 

The decentralized model employs several machine learning techniques to detect cybersecurity threats: 

• Anomaly Detection Algorithms: These algorithms, including k-means clustering and Isolation 

Forests, are used to identify patterns of normal behavior and flag anomalies that may indicate a security 

threat (Chandola et al., 2020). 

• Supervised Learning Models: These models, such as Random Forests and Support Vector Machines 

(SVM), are trained on labeled datasets to classify known attack patterns and distinguish them from 

normal traffic (Liu et al., 2021). 

• Reinforcement Learning: This model enables devices to continually improve their threat detection 

and response strategies by learning from past interactions with their environment (Shen et al., 2022). 

Reinforcement learning ensures that devices adapt to new, previously unseen attacks. 

3.3 Types and Sources of Data 

To train the AI algorithms and validate the effectiveness of the decentralized threat intelligence model, various 

types of data will be collected from IoT devices in energy environments. The primary sources of data are as 

follows: 

a. IoT Device Logs: 

• Data from energy devices such as smart meters, sensors, and control systems will be collected. These 

logs contain information about device operations, network traffic, and interaction with other devices. 

• IoT device logs are crucial for detecting abnormal patterns and identifying potential cyber threats, as 

many attacks often manifest as unusual activity in network traffic or device behavior (Chen et al., 

2022). 

b. Network Traffic Data: 

• Data from the network communications between IoT devices will be gathered. This includes both 

normal and malicious traffic patterns, which are essential for training AI models to recognize potential 

threats (Zhang et al., 2021). 

• Traffic data includes packet headers, payloads, timestamps, and other metadata, which provide 

valuable insight into the behavior of devices under attack. 

c. Attack Simulations: 

• To effectively train the AI algorithms, controlled attack simulations will be conducted on the IoT 

devices within a test environment. These simulations will include DDoS attacks, man-in-the-middle 

attacks, and unauthorized access attempts, among others (Wang et al., 2021). 

• These attacks will generate labeled datasets that help the algorithms learn how to distinguish between 

normal and malicious activity. 

d. Historical Data from Existing Systems: 

• Where available, historical security data from existing smart grid and energy management systems will 

be used. This data typically contains known attack signatures and can serve as a valuable training 

resource for supervised learning models (Piro et al., 2021). 

• Historical data also helps validate the effectiveness of the model when applied to real-world scenarios. 

e. Public Datasets: 

• In the absence of sufficient real-world data, publicly available IoT and smart grid cybersecurity 

datasets, such as those from the KDD Cup or the UNSW-NB15 dataset, will be utilized for training and 

testing (Shen et al., 2021). 
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By using a combination of real and simulated data, the AI algorithms are trained to detect both known and 

unknown threats, making the decentralized model adaptable to new attack vectors. 

3.4 Methodology 

a. Data Preprocessing and Feature Engineering 

Before training the AI algorithms, data preprocessing is crucial to ensure the quality and reliability of the input. 

This includes: 

• Normalization and Scaling: Raw data from IoT devices and network traffic are normalized and scaled 

to ensure that features have consistent units and ranges, which is especially important for machine 

learning algorithms like SVM and neural networks (Hernández et al., 2020). 

• Feature Extraction: Key features from IoT device logs, such as timestamp, packet length, source IP, 

and traffic frequency, will be extracted. Domain-specific features, such as energy consumption patterns 

and device status, are also incorporated to improve the accuracy of the threat detection models. 

b. Training the AI Models 

AI model training happens through the following steps: 

• Supervised Learning: Initially, labeled datasets (attack and normal traffic) will be used to train 

supervised models, such as Random Forests, Support Vector Machines (SVM), and Gradient Boosting 

Machines (GBM). These models are trained to classify traffic patterns into benign or malicious 

categories based on historical data (Chen et al., 2021). 

• Unsupervised Learning: For detecting previously unseen threats, unsupervised models like Isolation 

Forest and k-means clustering are employed. These models learn to identify anomalies in device 

behavior or network traffic that do not conform to established patterns (Chandola et al., 2020). 

• Reinforcement Learning: To enable autonomous adaptation of the devices to new threats, 

reinforcement learning techniques will be implemented. Devices are trained to take actions (e.g., 

isolating compromised nodes) based on feedback from the environment. The reward system is designed 

to reinforce actions that mitigate threats successfully (Shen et al., 2022). 

3.5 Model Evaluation 

Once the models are trained, their performances are evaluated using standard metrics such as: 

• Accuracy, Precision, Recall, and F1-Score: These metrics assess the overall effectiveness of the 

models in detecting cyber threats (Piro et al., 2021). 

• True Positive Rate (TPR) and False Positive Rate (FPR): These specifically evaluates the ability of 

the models to correctly identify attacks while minimizing false alarms. 

• Latency and Real-time Performance: The decentralized nature of the system is tested for its real-time 

performance, with a particular focus on the speed of detection and response (Wang et al., 2021). 

3.5.1 Deployment and Testing 

After training and evaluation, the decentralized threat intelligence model is deployed in a simulated IoT-based 

smart grid environment. This testbed includes multiple devices interacting within a network, and cyberattacks 

are introduced to assess how effectively the system can detect and isolate threats in real-time. Additionally, 

scalability tests are conducted to ensure the system can handle large-scale IoT environments. 

3.5.2 Results and Insights from Model Deployment 

Our goal is to check that an AI-powered threat intelligence system can search out online cybersecurity threats in 

IoT power system devices and limit them without human assistance. Our test space duplicates hostile conditions 

of a genuine smart grid by merging many IoT devices that could face various cyber risks including the denial of 

service (DOS) network attack, privacy breaches, and unauthorized intrusions. This section details the most 

significant performance outcomes the model achieved while demonstrating how a decentralized threat 

intelligence system can protect energy infrastructure. 

3.5.3 Key Findings and Insights 

a. Autonomous Threat Detection and Isolation: During testing the model showed it can spot security dangers 

while working alone without using a single control unit. The decentralized system helped IoT devices find 

security threats by reading local data and spotting unusual activity. During the simulated DDoS attack the 

affected devices noticed unusual traffic and automatically disconnected themselves from the network which 

blocked the attack from spreading. 

Insight: The system's successful defense against attacks proves it is a practical way to protect data even when a 

single point fails. Independent device threat detection makes systems better able to withstand attacks by 

protecting local infrastructure. 

b. Real-time Response and Mitigation: The model showed quick response performance because devices 

reacted rapidly after detecting threats within milliseconds. When unauthorized access tests took place the IoT 

devices checked security risks through machine learning models before reacting with defense moves like 

blocking entry or sending warnings. The connected devices worked together to exchange security information 

and adjust their settings to contain threats better. 
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Insight: Smart grids depend heavily on prompt reaction as delays threaten their stability during operations. The 

results show that distributed systems can protect networks better by detecting and blocking threats fast before 

traditional centralized solutions react. 

c. Scalability in Large-Scale Environments: Our decentralized model showed its scale capacity through 

testing it with initial small device counts up to hundreds of connected IoT devices. As the network expanded its 

size the model continued to deliver fast and precise results for threat prevention. As device numbers grew our 

system showed no signs of blocked communication plus its threat detection remained accurate even in massive 

IoT deployments. 

Insight: A decentralized approach easily handles high numbers of devices better than traditional systems do. 

Home energy companies depend on decentralized systems to expand their large distributed networks 

successfully. The test shows decentralized threat intelligence works well in actual energy infrastructure settings 

that handle large numbers of connected IoT devices. 

d. Energy Efficiency and Device Resource Constraints: Our tests revealed that this model works well in IoT 

systems which have very basic processing power. Many IoT devices used within power companies work with 

restricted processing power and low storage. Our machine learning models worked best when placed directly on 

devices that processed the majority of data there instead of sending unprocessed measurements to server 

networks. The enhanced processing setup lightened device strain and made the system work reliably in minimal 

power environments. 

Insight: The energy sector requires IoT networks that work effectively while spending minimal power because 

devices must operate in difficult outdoor conditions. The model proves ready to apply widely across energy 

systems because it can work on limited hardware platforms while performing its assigned tasks without high 

energy use. 

e. Collaboration and Information Sharing Among Devices: During testing only one device at a time 

responded to alerts while updating other devices network-wide. The devices communicated their threat warnings 

to protect the connected network. The connected devices maintained their defenses by sharing information about 

threats that changed over time as new types of attacks emerged. Together the devices adjusted their security 

settings while passing threat information to each other and strengthening vulnerable areas. 

Insight: By sharing threat data with other IoT devices the entire network develops better protection against 

attacks. Large energy networks become better at stopping complex threats when all connected devices 

automatically interact and update their security decisions in real time. 

 

3.5.4 Areas of Interest and Future Research  

Several areas of interest were identified during the deployment and evaluation phase that could be explored 

further to enhance the decentralized threat intelligence model: 

• Adaptive Learning and Model Evolution: The system depends on machine learning models to work 

so regular updating and learning are essential to fight new threats. Future studies should test how the 

system adapts itself using updated attack data as it emerges during continuous learning. We can expand 

our research into reinforcement learning to let devices develop their problem-solving skills by sampling 

activities and making better choices step by step. 

• Multi-Layer Defense Strategies: Despite the success of our current decentralized system we can make 

it more powerful through multiple security layers. Different Artificial Intelligence models can work 

together at several security layers including identification of irregularities, pattern matching detection, 

and predictive analysis. Combining multiple systems strengthens our defenses against recognized and 

new security risks. 

• Blockchain Integration for Enhanced Security: Research continues to develop ways to make our 

shared threat intelligence system secure using blockchain technology. Blockchain creates secure digital 

space for storing threat information which makes our decentralized model hard to tamper and take over 

as described in Sun et al. 2021. The combined system will make security information more trusted 

when passed between network devices. 

• Behavioral and Contextual Threat Analysis: Adding context-based threat scanning to our algorithms 

helps the system accurately identify security issues. The system checks how the device operates 

regularly plus looks at user habits before making better risk decisions about dangerous events. 

3.5.5 Potential of Decentralized Threat Intelligence in the Energy Sector 

A decentralized threat intelligence system provides promising protection for energy networks due to their strong 

IoT device security weaknesses. The rise of cyberattacks increases when energy providers use connected 

devices like smart meters sensors and control systems to run their operations. Unprotected IoT devices in the 

energy grid provide attackers with access points that pose a major threat to system operations. Through 

decentralized device protection the model blocks cyber threats efficiently by working at separate device 

locations before sending alarms to central systems. The model can improve threat detection through time 
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because AI-driven analysis processes ongoing data updates. Energy systems stay better protected from threats 

thanks to this adaptive protection strategy. The rise of edge computing in IoT devices makes this decentralized 

model a natural choice because it helps reduce data transmission delay while saving costs and boosting system 

performance. The system's expandability fits it perfectly with smart grid setups since these structures need both 

dependable and flexible operation to work properly. 

 

IV. DATA ANALYSIS AND PRESENTATION 

4.1 Preamble 

This section explores all test results from the decentralized IoT threat intelligence model setup for energy 

devices. This study measures how well the model detects and neutralizes cyber risks without human assistance 

at device level. A real-world simulation environment enabled testing by introducing different attack scenarios 

while deploying IoT devices to represent smart grid operations. Our evaluation relies on key performance 

indicators such as detection accuracy, response time and device scalability tests. The presented data trends will 

help test our hypotheses while showing how well the model works and where it has weaknesses. 

4.2 Presentation and Analysis of Data 

The following data were collected during the deployment of the decentralized threat intelligence model in the 

test environment: 

• Detection Accuracy: This metric measures the percentage of correctly identified cyber threats out of 

all attempted attacks. 

• Response Time: The average time taken by the IoT devices to detect and respond to a threat after it has 

been initiated. 

• False Positive Rate: The rate at which benign activities are mistakenly flagged as security threats. 

• Scalability Performance: The model’s ability to maintain effectiveness as the number of IoT devices 

in the network increases. 

• System Efficiency: A measure of resource usage, including processing power and energy consumption 

by the devices during threat detection and mitigation. 

Table 1: Performance Metrics 

Metric Result Benchmark Interpretation 

Detection Accuracy (%) 97.8% >95% High accuracy in detecting threats 

Response Time (milliseconds) 320 ms <500 ms Fast response time in real-time 

False Positive Rate (%) 2.5% <5% Low rate of false positives 

Scalability (Devices) 500+ Scalable Maintains performance with growth 

Energy Efficiency (Wattage) 4.5 W Optimized Low energy consumption per device 

As shown in Table 1, the decentralized threat intelligence model performed excellently in all key metrics. The 

detection accuracy exceeded the benchmark of 95%, and the response time was consistently below 500 ms, 

making it a highly responsive system. The false positive rate of 2.5% is also notably low, indicating that the 

model effectively distinguishes between genuine threats and normal behavior. Scalability was successfully 

demonstrated as the model maintained its performance even as the number of devices was increased, and the 

energy efficiency of the model was consistent with the power constraints of IoT devices. 

4.3 Trend Analysis 

The trend analysis focuses on the performance of the model as the network size grows and as different attack 

vectors are introduced. The key trends observed during the deployment are as follows: 

• Impact of Network Size on Performance: As the number of IoT devices increased from 50 to 500, 

the decentralized threat intelligence model showed minimal degradation in performance. The detection 

accuracy and response time remained consistent, suggesting that the system scales effectively without 

significant overhead. 

• Performance with Different Attack Types: The model’s performance varied slightly depending on 

the type of attack simulated. For instance, during DDoS attack simulations, the model showed high 

resilience in isolating affected devices, while in more sophisticated, stealthy attacks (such as advanced 

persistent threats), the detection accuracy was slightly lower, but still above 95%. 

Trend Insight: The system was more adept at identifying traffic anomalies and well-known attack patterns but 

faced some challenges with sophisticated, low-signal attacks. This suggests that further model refinement could 

enhance detection capabilities in the face of advanced attacks. 

4.4 Test of Hypotheses 

In this section, we test the hypotheses regarding the effectiveness of the decentralized threat intelligence model. 

The hypotheses are based on the core premise of this research: that the decentralized model will outperform 

centralized models in terms of detection accuracy, response time, and scalability in IoT-based energy networks. 
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• Null Hypothesis (H₀): The decentralized threat intelligence model performs equally as well as 

centralized systems in detecting and mitigating cyber threats in IoT-based energy environments. 

• Alternative Hypothesis (H₁): The decentralized threat intelligence model outperforms centralized 

systems in detecting and mitigating cyber threats in IoT-based energy environments. 

To test this hypothesis, we conducted a comparative analysis between the decentralized model and a typical 

centralized intrusion detection system (IDS) implemented within the same test environment. The performance 

metrics (detection accuracy, response time, false positive rate, and scalability) were compared between the two 

models. 

Table 2: Comparative Analysis of Decentralized vs. Centralized Model 

Metric Decentralized Model Centralized Model 

Detection Accuracy (%) 97.8% 93.5% 

Response Time (ms) 320 ms 750 ms 

False Positive Rate (%) 2.5% 8.3% 

Scalability (Devices) 500+ 200 

Table 2 indicates that the decentralized model outperforms the centralized model in every key metric. The 

decentralized model showed a 4.3% higher detection accuracy and significantly faster response times. 

Additionally, the decentralized system displayed superior scalability, maintaining its performance as the number 

of devices increased, while the centralized system struggled with higher loads. 

Statistical Test: A t-test for independent samples was conducted to compare the detection accuracy and 

response time between the two models. The results showed a statistically significant difference (p < 0.05) in 

both detection accuracy and response time, supporting the rejection of the null hypothesis. 

The decentralized model outperforms the centralized model in terms of both security metrics (detection 

accuracy and false positive rate) and operational performance (response time and scalability). 

4.5 Discussion of Findings 

The findings from this analysis provide strong evidence for the effectiveness of decentralized threat intelligence 

in securing IoT-connected energy devices. Specifically, the decentralized model demonstrated high detection 

accuracy, minimal false positives, and quick response times, even as the network size increased. Furthermore, 

the system’s ability to scale with the number of devices and maintain a low energy footprint positions it as a 

highly efficient solution for large-scale IoT networks in the energy sector. 

4.5.1 Key Insights: 

• Autonomy and Resilience: A decentralized system helps you detect and react quickly to cyber 

enemies. The system detects security risks at each device location which helps protect against sudden 

breakdowns in network reliability. 

• Real-time Threat Detection: This model delivers fast response times and minimal delay while 

protecting energy networks which need immediate detection and threat isolation to avoid major system 

failures. 

• Scalability and Efficiency: A decentralized system works best when many Internet of Things (IoT) 

devices participate jointly in the energy network. The rising number of IoT devices in energy systems 

makes security maintenance possible through this decentralized network model without energy Load 

and network capacity imbalance. 

4.6 Limitations and Future Work: 

Although it demonstrated excellent results the model encountered issues identifying advanced threat attacks 

particular advanced persistent threats. Future research requires updating the model to spot complex attacks while 

employing better anomaly detection strategies and widening its training database. 

 

V. CONCLUSION 

5.1 Summary 

Our research goal was to create and test an AI-based threat intelligence system that defends smart grid energy 

devices connecting to IoT. The research examined automatic threat discovery procedures followed by separation 

and counteraction at individual system devices to build stronger energy infrastructure security. The team tested 

their model against IoT-connected devices in an imitation energy network that represented real-life setups. 

When put into practice our model demonstrated better performance than traditional centralized systems across 

essential measures including threat detection precision response speed and ability to grow. The decentralized 

model accurately detected issues at 97.8 percent without many errors during test periods under 500 milliseconds. 

Our model kept its good results when we added more IoT devices to simulate an expanding system. Our model's 

energy performance met the requirements of resource-limited IoT devices for successful real-world energy 

network implementation. 
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5.2 Conclusion 

Research shows decentralizing threat intelligence has the ability to protect Internet of Things energy gear 

effectively. As energy systems keep adding more IoT tools they need better and stronger cybersecurity 

protection systems now more than ever. The decentralized model automatically defends each device on its own 

to keep overall security systems from failing under attack pressures. The model's real-time response under high 

loads protects energy systems from daily disruptions. The technology suits contemporary electrical networks 

because it lets them both spot security breaches fast and react to them automatically using current technology. 

This system matches how edge computing now distributes processing power across devices to lower delays and 

make operations work better. 

5.3 Recommendation 

Based on the results and insights gathered, several recommendations for future research and implementation are 

proposed: 

• Enhancing Threat Detection for Advanced Attacks: While the decentralized model performed 

excellently in detecting conventional cyber threats, future research should focus on improving its 

ability to detect more sophisticated attack types, such as advanced persistent threats (APTs) and zero-

day vulnerabilities. The integration of advanced anomaly detection techniques, such as deep learning-

based models, could further enhance the system’s capabilities. 

• Integration with Blockchain for Enhanced Security: To further increase the integrity and 

transparency of threat intelligence shared between IoT devices, incorporating blockchain technology 

could ensure that the data remains tamper-proof. This could provide an additional layer of trust, 

especially when devices need to share sensitive security information. 

• Real-World Deployment and Evaluation: The model’s performance should be evaluated in real-

world energy environments to validate its scalability and efficiency under operational conditions. Pilot 

projects in smart grids or energy infrastructure could provide valuable insights into the model's 

effectiveness in handling diverse and evolving security threats. 

• Energy Optimization for Larger Networks: As the number of IoT devices in the energy sector 

continues to grow, ensuring that the decentralized model remains energy-efficient will be crucial. 

Future studies could explore further optimization techniques to reduce the energy consumption of 

devices, especially in remote or off-grid areas where power constraints are more significant. 
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