

Knowledge Management Model of Smallholder Farmer Communities in Agricultural Area Development

Veronice¹, Henmaidi², Ernita Arif³

¹(*Department of agricultural business, Politeknik Pertanian Negeri Payakumbuh, Indonesia*)

²(*Department of Industrial Engineering, Universitas Andalas, Indonesia*)

³(*Department of communication studies, Universitas Andalas, Indonesia*)

Corresponding Author: Veronice

ABSTRACT : Knowledge Management (KM) is widely recognized as a strategic approach for strengthening innovation, competitiveness, and value creation in organizations. However, KM practices among smallholder farmer communities remain fragmented and weakly institutionalized, particularly in the context of agricultural area development. This study analyzes existing KM practices, identifies key determinants of KM implementation, and develops an integrated KM model suitable for agricultural areas. A mixed-method approach with concurrent triangulation was applied. Data were collected from 130 farmers belonging to 86 farmer groups in Lembah Gumanti District, Solok Regency, Indonesia. The results indicate that KM maturity is at Level 3 (standardization). Based on these findings, an integrated KM model is proposed, consisting of enabling factors, KM processes (knowledge acquisition, storage, distribution, and application), organizational learning as output, and productivity, efficiency, and value-added innovation as outcomes.

KEYWORDS – agricultural area, knowledge management, model, smallholder farmers, community

I. INTRODUCTION

Agricultural development in many developing countries continues to face complex challenges, including limited human resource capacity, restricted access to information, climate variability, and slow adoption of innovation. Smallholder farmers dominate agricultural production systems and play a crucial role in food security; however, their productivity and competitiveness remain relatively low.

Farmers possess substantial experiential knowledge derived from daily practices, while extension workers, researchers, and agribusiness actors generate scientific and technical knowledge. Without systematic mechanisms for managing these diverse knowledge sources, valuable insights remain scattered and underutilized. As a result, learning processes within farmer communities tend to be informal and unsustainable.

Knowledge Management (KM) offers a structured approach to capture, organize, share, and apply knowledge to improve individual and collective performance. KM has been widely adopted in business and industrial organizations; nevertheless, its application in agricultural communities is still limited and often focused only on technology adoption rather than holistic knowledge processes.

Previous studies emphasize that effective KM in rural contexts must integrate social, organizational, and technological dimensions. Therefore, there is a need for a context-specific KM model that reflects the realities of smallholder farmer communities and supports agricultural area development. This study addresses this gap by proposing a KM model derived from empirical evidence and supported by recent literature.

II. METHODS

This study employed a mixed-method research design using a concurrent triangulation approach, in which quantitative and qualitative data were collected and analyzed simultaneously to obtain a comprehensive understanding of KM practices among smallholder farmers.

The research was conducted in Lembah Gumanti District, Solok Regency, Indonesia, an area characterized by intensive horticultural farming and active farmer group institutions. The population consisted of 86 farmer groups. A total of 130 farmers were selected as respondents using proportioned stratified random sampling to ensure representation across farmer group strata.

Quantitative data were gathered using structured questionnaires measuring KM processes and enabling factors. Qualitative data were obtained through field observations, in-depth interviews, and focus group discussions (FGD) involving farmers, group leaders, and extension workers.

Quantitative data were analyzed using descriptive statistics to determine KM maturity levels. Qualitative data were analyzed through thematic coding and interpretation. Expert judgment was used to validate model components and relationships.

III. RESULT & DISCUSSION

PROPOSED KNOWLEDGE MANAGEMENT MODEL

The model is designed to be practical for smallholder farmer communities and is built from two complementary foundations: (a) empirical findings from the Lembah Gumanti field study (Veronice, 2019; Veronice, 2020), and (b) contemporary KM literature that emphasizes process integration, digital enablement, and socio-organizational enablers. Recent reviews show that maturity frameworks and context-sensitive KM designs produce better outcomes when they combine technical (IT) and social (culture, leadership) enablers with clear process metrics.

Enabling factors are the foundations that determine whether KM processes can be implemented and sustained. In practice they should be assessed and strengthened as part of any KM rollout.

1. Management & strategy

- *Definition:* A clear KM vision, objectives tied to farm performance (productivity, value-addition), and an implementation roadmap.
- *Operational indicators:* Presence of KM objectives in group work plans; budget or resource allocation for KM activities; periodic monitoring of KM indicators. Evidence shows organizations that embed KM into strategy progress more rapidly through maturity stages.

2. Organizational culture & social capital

- *Definition:* Norms, trust, reciprocity and reward structures that encourage members to share experience and adopt others' knowledge.
- *Operational indicators:* Frequency of peer-to-peer learning events, perceived trust scores in surveys, and practices that reward sharing (recognition, market linkages). Field studies show culture and trust are often the most decisive enablers in rural KM contexts.

3. Leadership & governance

- *Definition:* Local leaders and extension agents who champion KM, coordinate knowledge flows, and resolve conflicts.
- *Operational indicators:* Active KM champions, clarity of roles (who documents, who trains), and regular leadership-led knowledge reviews. Recent maturity studies highlight leadership as a recurring critical success factor.

4. Technology & information infrastructure

- *Definition:* Affordable ICT (smartphones, messaging platforms, basic digital repositories) to capture, store and share explicit knowledge.
- *Operational indicators:* Existence of a shared repository or group chat, proportion of members with access to basic digital tools, and digital literacy training sessions. Emerging agricultural KM frameworks show that simple, locally appropriate digital tools materially increase distribution and reuse of knowledge.

5. Institutional linkages & benchmarking

- *Definition:* Formal relationships with extension services, research institutions, buyers and peer groups for benchmarking and sourcing external knowledge.
- *Operational indicators:* Number of collaborative activities with external partners, benchmarking visits, and joint trials. Benchmarking and external alliances accelerate acquisition of novel practices.

KM processes – practical detail and measurable indicators

The model operationalizes KM through four sequential but iterative processes. For each process I list practical actions (what farmer groups do) and measurable indicators (what to track).

1. Knowledge acquisition

- *Actions:* Conduct farmer field observations, collect indigenous practices, invite experts, attend training, carry out benchmarking visits, and record lessons learned.
- *Indicators:* Number of unique knowledge sources used per season; percent of members participating in acquisition activities; existence of protocols for capturing tacit knowledge (interviews, video). Studies of rural KM report that acquisition is frequently the strongest process when social capital is high.

2. Knowledge storage

- *Actions:* Convert tacit knowledge into explicit formats (short manuals, audio notes, annotated photos), maintain a simple digital folder or physical binder, and index information by topic and season.

- *Indicators:* Shareable knowledge objects per group (count), percent of knowledge items digitally retrievable, presence of a simple taxonomy for records. Recent work argues that even low-tech digital repositories dramatically improve retrieval and reuse.
- 3. **Knowledge distribution**
 - *Actions:* Use mixed channels — face-to-face meetings, demonstration plots, WhatsApp groups, SMS alerts, and extension visits — tailored to members' preferences.
 - *Indicators:* Frequency of distribution events, diversity of channels used, message clarity scores (survey). Combining community channels with digital messaging is shown to improve reach while preserving local contextualisation.
- 4. **Knowledge application**
 - *Actions:* Translate shared knowledge into practice through on-farm trials, co-created SOPs, and farmer-led demonstrations; monitor results and refine.
 - *Indicators:* Number of innovations trialed, measured changes in yield or input efficiency, percent of members adopting practices after X months. Application is the crucial stage that converts KM into observable outcomes.

Outputs, outcomes and feedback loops (model dynamics)

- **Primary output:** Organizational learning — observable as improved group routines, documented SOPs, and collective problem-solving capacity.
- **Short-term outcomes:** Higher adoption rates of improved practices, reduced variability in yields, and better group record-keeping.
- **Medium-term outcomes:** Increased productivity, cost efficiency, and initial value-added activities (processing, packaging).
- **Feedback loops:** Outcomes produce evidence and motivation that feed back into strategy, leadership decisions, and resource allocation for KM. Contemporary maturity frameworks highlight feedback and measurement as essential to progress from “standardized” to “optimized” stages.

Measurement & maturity progression

To track progress, the model recommends a compact KM dashboard with indicators for each element (sample): acquisition activity index, storage accessibility score, distribution reach metric, and application adoption rate — aggregated into an overall KM maturity index mapped to five levels (initiate → innovate). Mature systems set targets for each cycle and adjust enabling factors accordingly. Recent reviews of KM maturity models provide validated constructs that can be adapted to the farmer group context.

1. **Diagnosis (0–2 months):** Rapid assessment of culture, leadership, digital access, and priority knowledge gaps.
2. **Foundational setup (2–6 months):** Establish simple repositories (digital/physical), designate KM champions, and run orientation sessions. Quick wins: document 5 high-value practices and circulate via group chat.
3. **Process institutionalization (6–18 months):** Regularize knowledge collection (post-harvest reviews), formalize demonstration calendar, and strengthen external linkages.
4. **Maturity scaling (18+ months):** Integrate KM metrics into group planning, use benchmarking to refine practices, and explore modest automation (templates, chatbots) where feasible. Evidence from recent deployments shows that following a phased approach increases acceptance and reduces risk of tech abandonment.

Risks and mitigation

- **Risk:** Over-reliance on external digital tools without local training → *mitigation:* choose low-bandwidth tools and lead-farmer support.
- **Risk:** Loss of tacit knowledge if documentation is superficial → *mitigation:* prioritize interview-based capture and short video demonstrations.
- **Risk:** Leadership turnover reduces momentum → *mitigation:* build multi-person KM teams and embed KM tasks into group bylaws.

The proposed model is constructed based on empirical findings and supported by recent KM literature. The model consists of four major components: enabling factors, KM processes, output, and outcome.

5.1 Enabling Factors

Enabling factors represent foundational conditions that support KM implementation. Management and strategy define long-term direction, while organizational culture shapes knowledge-sharing behavior. Leadership plays a critical role in motivating members and creating trust. Technology infrastructure supports documentation and dissemination of knowledge.

5.2 Knowledge Management Processes

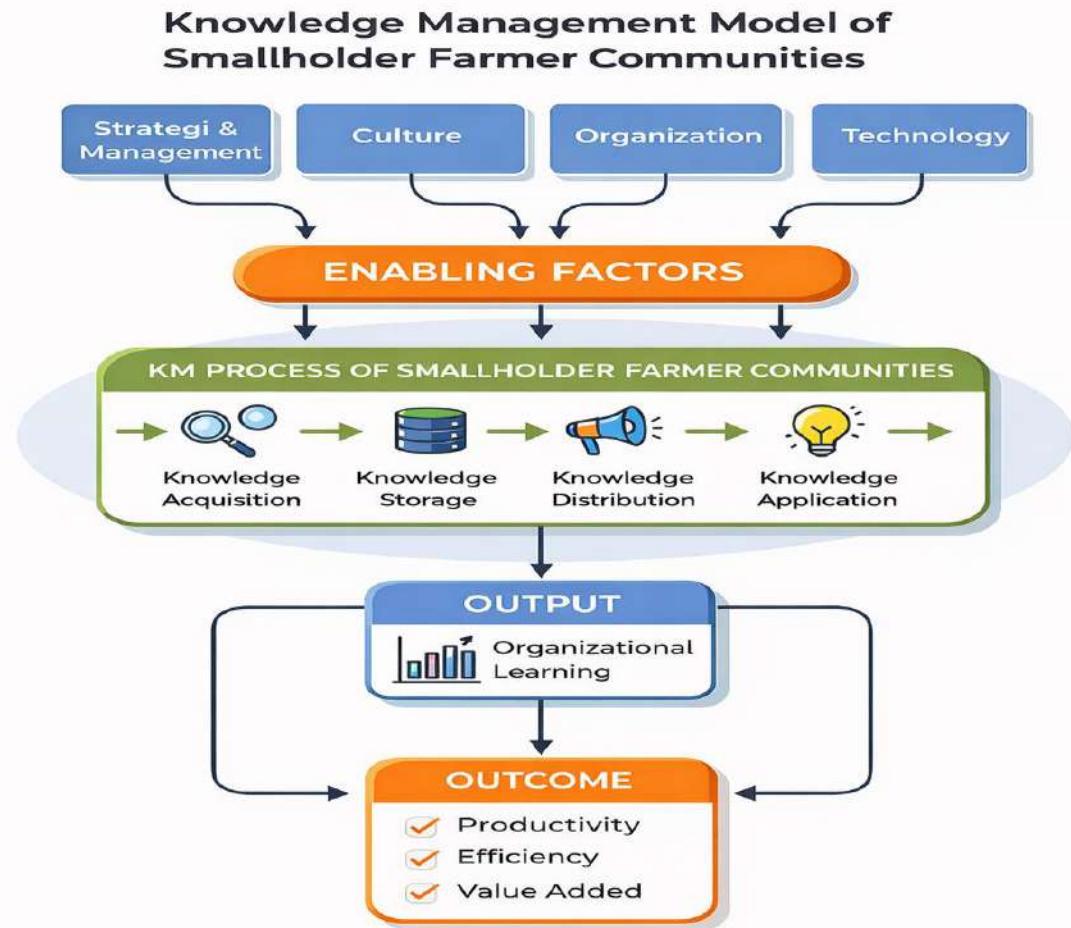
Knowledge acquisition refers to systematic efforts to capture internal experiences and external information. Storage involves organizing and documenting knowledge in accessible formats. Distribution emphasizes sharing knowledge across individuals and groups. Application refers to using knowledge in decision-making and farming practices.

5.3 Organizational Learning as Output

The interaction between enabling factors and KM processes produces organizational learning. Farmer groups gradually develop collective understanding, routines, and problem-solving capacity.

5.4 Performance Outcomes

Organizational learning leads to improved productivity, efficiency, and value-added innovation. Productivity increases through better cultivation practices. Efficiency improves through optimized resource use. Value-added innovation emerges through diversification and post-harvest processing.


5.5 Model Dynamics and Integration

The model operates as a continuous cycle. Feedback from outcomes informs future KM processes, creating continuous improvement. The integration of social, organizational, and technological dimensions ensures model sustainability.

5.6 Implications of the Model

The model provides guidance for policymakers and extension agencies to design KM-based programs. It also offers a framework for strengthening farmer institutions.

Fig. 1. Knowledge management model of smallholder farmer communities.

Source: Adapted from Veronice (2020)

VI. CONCLUSION

The proposed KM model integrates enabling factors, processes, learning, and performance outcomes into a coherent framework that supports knowledge-based agricultural area development.

REFERENCES

- [1] I. Nonaka and H. Takeuchi, *The knowledge-creating company: How Japanese companies create the dynamics of innovation*, Oxford University Press, 1995.
- [2] T.H. Davenport and L. Prusak, *Working knowledge: How organizations manage what they know*, Harvard Business School Press, 1998.
- [3] M. Alavi and D.E. Leidner, Review: Knowledge management and knowledge management systems, *MIS Quarterly*, 25(1), 2001, 107–136.
- [4] K.M. Wiig, *Knowledge management foundations: Thinking about thinking*, Schema Press, 1993.
- [5] Veronice, *Knowledge management of smallholder farmer communities in agricultural area development*, doctoral diss., Andalas University, Indonesia, 2020.
- [6] Veronice, Helmi, Henmadi, and E. Arif, Framework assessment and index of knowledge management of small farmers in the agricultural area, *International Journal of Scientific & Technology Research*, 8(11), 2019, 2359–2366.
- [7] N. Cristache, Integrated knowledge management processes and innovation performance, *Journal of Innovation Management*, 13(1), 2025, 1–15.
- [8] A. Buitendag and M. Hattingh, A smart agricultural knowledge management framework to support emergent farmers, *Information Development*, 40(2), 2024, 210–225.
- [9] Organisation for Economic Co-operation and Development (OECD), *Innovation, productivity and sustainability in agriculture*, OECD Publishing, 2020.
- [10] Food and Agriculture Organization (FAO), *Digital agriculture transformation*, FAO, Rome, 2021.
- [11] R.M. Grant, Toward a knowledge-based theory of the firm, *Strategic Management Journal*, 17(Special Issue), 1996, 109–122.
- [12] A.H. Gold, A. Malhotra, and A.H. Segars, Knowledge management: An organizational capabilities perspective, *Journal of Management Information Systems*, 18(1), 2001, 185–214.
- [13] L. Argote, *Organizational learning: Creating, retaining and transferring knowledge*, Springer, 2013.
- [14] H. Lee and B. Choi, Knowledge management enablers, processes, and organizational performance, *Journal of Management Information Systems*, 20(1), 2003, 179–228.
- [15] M.H. Zack, Developing a knowledge strategy, *California Management Review*, 41(3), 1999, 125–145.
- [16] D. Hislop, *Knowledge management in organizations: A critical introduction*, Oxford University Press, 2013.
- [17] E.M. Awad and H.M. Ghaziri, *Knowledge management*, Pearson Education, 2004.
- [18] G.D. Bhatt, Knowledge management in organizations: Examining the interaction between technologies, techniques, and people, *Journal of Knowledge Management*, 5(1), 2001, 68–75.
- [19] Asian Productivity Organization (APO), *Knowledge management tools and techniques*, APO Publishing, Tokyo, 2020.
- [20] World Bank, *Agricultural innovation systems: An operational guide*, World Bank, Washington DC, 2022.
- [21] H. Idrees, J. Vveinhardt, and M.A. Gulzar, Knowledge management and innovation: A systematic review, *Journal of Knowledge Management*, 2023.
- [22] E. Bougoulia and M. Glykas, Knowledge management maturity assessment frameworks: A systematic review, *Knowledge Management Research & Practice*, 2023.